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Abstract—Burst suppression (BS) activity in 

electroencephalogram (EEG) is clinically accepted as a marker of 
brain dysfunction or injury. Experimental studies in a rodent 
model of brain injury following asphyxial cardiac arrest show 
evidence of BS soon after resuscitation, appearing as a 
transitional recovery pattern between isoelectricity and 
continuous EEG. The EEG trends in such experiments suggest 
varying levels of uncertainty or randomness in the signals. To 
quantify the EEG data, Shannon entropy and Tsallis entropy are 
examined. More specifically, an entropy-based measure named 
Tsallis Entropy Area (TsEnA) is proposed to reveal the presence 
and the extent of development of BS following brain injury. The 
methodology of TsEnA and the selection of its parameter are 
elucidated in detail. To test the validity of this measure, 15 rats 
were subjected to 7 or 9 min of asphyxial cardiac arrest. EEG 
recordings immediately after resuscitation from cardiac arrest 
were investigated and characterized by TsEnA. The results show 
that TsEnA correlates well with the outcome assessed by 
evaluating the rodents after the experiments using a well 
established neurological deficit score (Pearson correlation = 0.86, 
p << 0.01). This research shows that TsEnA reliably quantifies the 
complex dynamics in BS EEG and may be useful as an 
experimental or clinical tool for objective estimation of the gravity 
of brain damage after cardiac arrest 

Index Terms—Burst suppression, cardiac arrest, EEG, 
quantitative, Tsallis entropy  

I. INTRODUCTION 
ITH the advent of modern cardiopulmonary 
resuscitation (CPR) accompanied by defibrillation, the 

mortality from cardiac arrest (CA) has been reduced. However, 
neurological outcome after CA remains a major cause for 
concern with poor, long-term neurological sequelae [1]. 
Cerebral cortex is very sensitive to generalized ischemia caused 
by circulatory arrest. Presently no clinically satisfied 

neurological diagnostic or monitoring tools are available to 
assess the brain function and its recovery after CA. 
Electroencephalogram (EEG) reflects the postsynaptic 
potentials generated from cortical neurons. It constitutes a 
valuable tool for continuous evaluation of brain injury or 
dysfunction. Quantitative EEG measure may further be useful 
for accurate injury stratification and perhaps early 
prognostication [2]-[5]. Previous research has shown that 
remarkable EEG recovery patterns are observed following 
cerebral circulatory deprivation as a result of dynamic changes 
in brain perfusion and electrophysiological recovery. Moreover, 
these patterns are tightly correlated with post-ischemic cerebral 
damage [6]-[10]. 
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The term burst suppression (BS) is used to describe the EEG 
pattern characterized by θ and/or δ waves, at times intermixed 
with faster waves, and intervening periods of relative 
quiescence [11]. Such BS events often appear in survivors of 
cerebral circulatory arrest subjected to life-sustaining 
treatments [12]. Although BS is also reported in anesthetic state 
and neurosurgically isolated cerebral cortex, this paper focuses 
on the BS soon after cerebral circulatory arrest. Our previous 
studies in an animal model of global ischemic brain 
demonstrated that timely emergence of bursts, leading to a 
continuous or fused EEG rhythm was associated with a good 
neurological outcome. On the other hand, persistent BS pattern 
with lower burst frequency occurred in animals with bad 
recovery [8], [10]. Thus, although BS observations provide 
valuable diagnostic and predictive information on the eventual 
neurological outcome, objective evaluation of the complex data 
is essential. Developing a quantitative measure that defines this 
sequence of events will help in the rigorous evaluation of injury 
severity and the extent of recovery in these subjects. 

Among the techniques used to analyze BS EEG, burst count 
has previously been accepted as a simple method [10], [13]. 
However, manual burst count is time-consuming and it 
excludes some important discriminative information such as 
the shape of burst waveform, and the duration of each burst or 
suppression epoch. Besides burst count, measures such as EEG 
amplitude in suppression epochs and the duration of BS period 
are also found to be associated with neurological recovery after 
CA [10], [12], [14]. For all these measures, the problem of 
subjectivity cannot be ignored despite established assessment 
criteria to maintain consistency between different EEG 
examiners [10]. Given the close prognostic relationship 

W 
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between electrical and neurological recovery from brain injury, 
and the putative role of BS in the recovery, there is a need to 
develop objective and reliable methods to quantify the 
characteristics of BS activity in EEG recordings.  
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when q→1, TsEn in (3) recovers to the definition of ShEn as 
follows: Entropy is a measure of order and disorder in a dynamical 

system according to information theory [15]. It shows promise 
in prognosticating the degree of brain injury after CA [3], [4], 
[16]. Entropy may be an ideal technique for monitoring injury 
because BS pattern with its rhythmicity or regularity would 
have low entropy compared with continuous EEG that is more 
random. Tsallis entropy (TsEn) [17], [18] plays a central role in 
nonextensive statistical mechanics. It is successful at 
describing systems with long-range interactions, multifractal 
space-time constraints or long-term memory effects [19]. TsEn 
also allows incorporation of an entropy scaling parameter with 
which short and long range interactions can be probed. EEG 
spikes, bursts, and continuous or fused rhythms may thus be 
differentiated with the help of Tsallis statistics. The goal of this 
paper is to develop a quantitative estimation of BS activity 
based on Tsallis statistics. A measure called Tsallis Entropy 
Area (TsEnA) is proposed. It combines the aforementioned 
discriminative EEG features during early recovery period after 
asphyxial CA into a single value. Then this measure is applied 
to comprehensively evaluate the incidences of BS events 
occurring throughout recovery after resuscitation from CA. It is 
expected that TsEnA correlates closely with a standardized 
neurological deficit score (NDS), which is a well established 
estimation of neurological outcome in clinic [2], [3], [13].  
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TsEn is nonextensive and holds the following pseudo- 
additivity rule [18]: 

( )
( ) ( ) (1 ) ( ) (

TsEn A B
TsEn A TsEn B q TsEn A TsEn B= + + −

∪     (5) 

where the parameter q measures the degree of nonextensivity 
[19], with q < 1, q = 1 (i.e. ShEn) and q > 1, respectively, 
corresponding to superextensive (TsEn(A∪B)>TsEn(A)+ 
TsEn(B)), extensive, and subextensive (TsEn(A∪B)<TsEn(A)+ 
TsEn(B)) statistics. TsEn is consistent with Laplace’s 
maximum ignorance principle, i.e. it is extreme at 
equiprobability ( iWpi ∀= ,/1 ).This extremum is given by [18] 
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which, in the limit q→1, gives the extremum of ShEn as 
                                                      (7) lnextremumShEn W=

Tsallis’ work establishes a generalization of Boltzmann- 
Gibbs statistics which can properly describe the longstanding 
quasi-stationary state and weakly ergodic phenomenon in 
long-range interacting systems [18]. Although the 
generalization of nonextensivity was understood in the 
thermodynamical sense from earlier times, it now gets broader 
application beyond thermodynamics and TsEn has been widely 
used in biomedical signal processing such as analysis of ECG 
[21] and EEG [22], [23] recently. Studies showed that the 
Tsallis environment could provide more detailed information 
than the conventional Shannon counterpart, especially when 
used as burst or spike EEG analysis [22], [24], [25]. 

II. MATHEMATICAL METHOD AND PHYSIOLOGICAL 
FOUNDATION 

A. Tsallis entropy and nonextensivity of the EEG system 
Entropy, which is defined as a measure of uncertainty, could 

be used to reveal the complexity of a dynamical system. The 
most basic entropy measure used to analyze system complexity 
is Shannon Entropy (ShEn), which is defined as [15]: 

1
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where {pi} are the probabilities associated with W microscopic 
configurations with . ShEn is based on Boltzmann- 

Gibbs statistical mechanics and standard thermodynamics in 
which the effective microscopic interactions and the 
microscopic memory are of short range [18]. ShEn has 
extensivity (additivity) as 

1
1W
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EEG signals result from the temporal and spatial summation 
of postsynaptic potentials from cortical pyramidal cells [26] 
which are eventually projected on the scalp. Nonextensivity is 
inherent in EEG because of long-range interactions [27]: 
electrical information is transmitted across different cortical 
areas and feedback loops which are composed of 
corticothalamic and thalamocortical networks [28]. Therefore, 
it is rational and necessary to use a nonextensive measure 
instead of Shannon one to get a grip on the long-range effects in 
EEG. In addition, since mutual information exists among 
different neuron clusters, it is reasonable to consider EEG as a 
subextensive system (i.e. q > 1) [22], [23]. For example, there is 
TsEn(A∪B)< TsEn(A)+TsEn(B), where A and B are two 

                                 (2) ( ) ( ) (ShEn A B ShEn A ShEn B= +∪
where A and B are two independent systems in the sense that  
p(A∪B) = p(A) p(B). 

In spite of its great success in analysis of extensive systems, 
ShEn could not properly describe systems with long-range 
interactions, long-term memory effects, or abrupt changes [20]. 
A nonextensive statistics, known now as Tsallis Entropy 
(TsEn), was proposed by Tsallis [17], [18], which was defined 
as 
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Fig.1: Entropy relationship between two systems A and B. 

neuronal clusters in cortex which contribute to the EEG activity 
(refer to Fig. 1). 

This paper analyzes sequential EEG segments with a sliding 
window of 3000 points (12 s) and an overlap of 1500 points (6 
s). At a data length of 3000 points, the entropy bias introduced 
by the finite window can be neglected [29]. To properly 
estimate the probability distribution {pi} and obtain a “smooth” 
histogram, the number W of microstates is fixed to 50 
according to our previous work [22], [23], [25]. Although the 
parameter q plays an important role in the result of TsEn 
computation, there has been no established method to optimize 
its value. When analyzing EEG or other signals, most 
researchers try different q values and optimize the selection 
based on some criteria and their data characteristics [22], [23], 
[30]. It has been shown previously that the value of TsEn 
decreases monotonically with the parameter q [17] while “the 
spike-detection-power” grows gradually with q [22], [23]. 
Therefore, the TsEn is calculated and compared with four 
empirically determined values of q = 0.5, 1, 3 and 5 in this 
paper (TsEn recovers to ShEn when q = 1). In these cases, 
TsEn/ShEn saturates at the extremum of 12.1, 3.91, 0.500 and 
0.250 according to (6) and (7). 

B. BS features in EEG 
BS is defined as bursts of variable duration separated by 

periods of generalized suppression lasting at least 1 s [31]. The 
bursts may range from high-amplitude δ activity or polyspike 
and slow wave complexes [5], simultaneously appearing in all 
EEG channels. BS pattern is generally accepted as a 
dissociation of the cortex from the intrinsic pacemaker neurons 
in the reticular thalamic nucleus [26]. Bursts in EEG are a 
reflection of cortical excitability to input from thalamocortical 
neurons [26], [32], while the suppression epoch is a reflection 
of the refractory period of cortical neurons [31]. Our previous 
studies in animal model have shown that: 1) burst frequency is 
higher in subjects with good neurological outcomes [10], [13]; 
2) the EEGs in poor outcome animals are rather flat during 
suppression period [9], [14]. It seems that frequent bursts in 
EEG reveal less dysfunction in cortical neurons and/or 
relatively unhindered pathway from thalamocortical neurons to 
cortical neurons. In addition, higher amplitude of EEG 
background during suppression period very likely denotes that 
less injury is caused by asphyxia in cortical neurons, for the 
generation of slow waves is the intrinsic feature of normal 
cortical neurons in the isolated cortex [32], [33]. Finally, the 
time latency of EEG recovery from cerebral circulation arrest 
also provides diagnostic and prognostic information [6], [10], 
[12]. We name this discriminative factor as duration of BS (i.e. 
the time from the first sign of bursts to establishment of 

continuous EEG). During early recovery period after CA, 
plentiful oxygen and glucose drive cortical neurons back 
towards their normal function — eliciting rhythmic potentials 
from thalamocortical activity [26]. Therefore, the faster the 
cortical neuronal function normalizes the shorter the duration 
of BS in EEG. 

C. Relationship between TsEn and BS features 
In this section, simulation data are used to illustrate the 

relationship between the aforementioned BS features and TsEn 
statistics. 3,000-point simulated EEG is composed of 
intermingled spikes and colored noise with the low frequency 
band ranging from 0.5 to 10 Hz (for EEG suppression). The 
effect of burst frequency on TsEn is shown in Fig.2. It is found 
that TsEn increases as more spikes are added to the background 
time series. Concomitantly with the increase of burst frequency 
(i.e. suppression epochs with low amplitude are replaced more 
and more by synthetic bursts), probability density function 
(p.d.f.) of data, which is estimated using the histogram method, 
tends towards a flatter and more uniform distribution. 

To quantify the relative amplitude of burst and suppression 
in EEG, a measure called BS ratio of amplitude (BSRa) is 
defined as the amplitude ratio of burst to suppression. Then the 
amplitude of EEG suppression (simulated by low-frequency 
noise) is varied to test the effect of BSRa on TsEn. Fig. 3 shows 
that increasing amplitude of suppression makes the p.d.f 
broaden and flatten. In other words, larger BSRa leads to 
sharper p.d.f. As seen in Fig.3, TsEn decreases monotonically 
and significantly with increasing BSRa. 

D. Tsallis Entropy Area (TsEnA) 
According to the illustrations in subsection B and C, the three 

EEG features (i.e. burst frequency, BSRa and duration of BS) 
are combined into a measure based on TsEn statistics to grade 
the BS EEG after CA. We define TsEnA as the area in 
TsEn-time (y-x) plane below the extremum of TsEn and above 
the curve of TsEn, with the time duration that covers the entire 
BS pattern period after CA. Mathematically, TsEnA is defined 
in the following format: 
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Fig.2: The relationship between TsEn and burst frequency. p.d.f., probability density function (as estimated using the histogram method). 

 
Fig.3: The relationship between TsEn and BS ratio of amplitude (BSRa). 

 
Fig.4: The relationships among BS features, TsEnA and neurological outcomes. 

where t1 and t2 are the starting time and end time of BS duration. 
The hypothesized relationships among BS features, TsEnA and 
neurological outcomes are shown in Fig.4. 

III. EXPERIMENTS AND STATISTICAL METHODS 

A. Animal experiments 
The Animal Care and Use Committee of the Johns Hopkins 

Medical Institutions approved the experimental protocol used 
in this study. 15 adult male Wistar rats (300-350 g, mean = 330 
g) were randomly assigned to 7-min (10 rats) or 9-min (5 rats) 
asphyxial insults. CA and resuscitation protocol was performed 
as previously reported [9], [34]. Anesthesia was induced with 
4.5% halothane, followed by tracheal intubation. The femoral 
artery was cannulated for the monitor of mean arterial pressure 
(MAP). After preparation, baseline EEG was recorded for 10 
min. Then global asphyxia was induced for 7 or 9 min by 
clamping the tracheal tube and disconnecting the ventilator. 
After asphyxia, CPR was initiated. Return of spontaneous 
circulation (ROSC) was defined as achievement of 
spontaneous MAP > 60 mmHg. To minimize the drug effect on 
EEG, no anesthesia was provided post-resuscitation. The core 
temperature of the subject was maintained throughout the 
experiment at 36.5- 37.5  and for the first 24 hours℃ .  

The neurologic functional outcomes were evaluated using 
NDS, which included subsores of general behavioral deficit, 
brain-stem function, motor and sensory assessment, behavior, 
and seizures [2]. NDS is scored in the range from 0 (worst 
outcome) to 80 (best outcome).The NDS of rats was 
determined 72 hours after ROSC by an independent observer. 
Good neurological outcome is defined as NDS > 60 while NDS 
< 60 is considered as poor outcome [10]. 

Two channels of bipolar EEG were recorded using anterior 
versus posterior differential montage in the right and left 
parietal areas (DI700 Windaq system). A ground electrode was 
placed in the midline. Recording continued from baseline to 
post-resuscitation period for a total recording time of 400 min. 
The signals were digitized using the data acquisition package 
CODAS (DATAQ Instruments INC., Akron OH). Sampling 
rate was 250 Hz. 12 bit A/D conversion was used. EEGs were 
band-pass filtered (0.5-70 Hz). The first burst was defined by 
the following criteria: sharply contoured morphology, 
after-going slow wave, and conspicuity from background [13]. 

B. Statistical methods and performance estimation 
Pearson correlation of bivariate analysis is used to evaluate 

the correlation between 72-hour NDS and TsEnA measurement. 
Large correlation coefficient with small p value (i.e. less than 
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0.01) apparently provides a reliable estimation of neurological 
outcomes. To quantify the dynamic range of TsEnA values 
obtained from different rats given certain q, we define a 
parameter relative dynamic range (RDR, in dB) as 

75  ( ) 25  ( )20lg
( )

th percentile TsEnA th percentile TsEnARDR
median TsEnA

−
=    (9) 

which gives an objective estimation of the dynamic range of 
TsEnA among the whole population of subjects. TsEnA 
measurement with large RDR presents obvious differences 
between poor-outcome rats and good-outcome rats and thus 
provides a better distinguishability in brain injury stratification. 
In this paper, Pearson correlation coefficient (between TsEnA 
and NDS) and RDR are chosen as criteria to evaluate the 
performance of TsEnA measure with q ranging from 0.5 to 5. 

IV. RESULTS 
EEG becomes highly suppressed and quickly changes to an 

isoelectric tracing within seconds after CA. About 16 min (16.4 
± 1.9) after ROSC, EEG visibly returns as a BS pattern. Then 

the bursts gradually merge into background activity while the 
spontaneous EEG recovers. TsEnA values are calculated with q 
= 0.5, 1, 3 and 5 in all EEG recordings and the results are 
averaged between left and right channels (see Table I). The 
time duration of TsEnA is defined from 22 min to 250 min (0 
min is the start point of recording). The starting time t1 in 
Equation (8) is chosen as 22 min to avoid the artifact induced 
by CPR (10 min baseline + 7 or 9 min asphyxia + CPR within 2 
min). 250 min is selected as the end time t2 to include almost all 
the BS activity in EEG. Fig. 5 shows two typical results from 
animals with good (NDS = 74, Rat 1) and poor outcomes (NDS 
= 46, Rat 15) respectively (q = 3). The results show that TsEn 
(q = 3) is stable during baseline and during the late period of 
recovery while it drops and fluctuates distinctly during early 
recovery due to the BS pattern in EEG. This decrease of TsEn is 
more prominent in rodents with poor neurological outcomes. In 
contrast, TsEn (q =  

 
Fig.5: BS pattern, ShEn, TsEn (q = 3) and TsEnA in EEGs from animals with 
different neurological outcomes (NDS = 74 vs. NDS = 46). EEG signals (left 
channel) recorded during baseline (10 min), the entire asphyxial duration (7 or 9 
min), resuscitation and recovery periods spanning 400 min are compressed in 
these plots. Stars denote the artifact induced by CPR. 

TABLE I 
TSENA IN EACH RAT WITH DIFFERENT Q VALUES 

Rat 
ID 

Asphyxia 
(min) 

NDS TsEnA (averaged between two channels) 
q = 0.5      q = 1         q = 3         q = 5 

1 7 74 6855.3 1746.7 7.1003 0.17413 
2 7 74 8302.0 2127.1 12.722 0.35800 
3 9 71 7670.3 1902.7 6.9706 0.08170 
4 7 70 7589.6 1889.3 5.9524 0.05270 
5 9 70 8571.5 2166.9 10.246 0.23262 
6 7 70 8344.5 2065.7 7.4091 0.08628 
7 7 67 9413.2 2497.4 15.409 0.34171 
8 7 66 8375.6 2087.7 8.1391 0.11539 
9 7 59 9629.7 2557.8 18.488 0.56813 
10 9 54 9531.9 2636.5 27.233 1.52073 
11 9 53 10201 2745.6 23.797 0.94040 
12 9 52 11692 3273.1 44.798 2.68978 
13 7 50 10611 3084.9 40.524 2.43142 
14 7 49 10695 2960.8 37.898 2.94993 
15 7 46 10020 2766.7 23.402 0.92637 

 
1) fluctuates a lot throughout the entire EEG recording, thus 
giving less distinctive exhibition of BS pattern in each subject. 

To reveal the effect of parameter q on the RDR and the 
correlation of TsEnA and NDS, the average TsEnA (averaged 
between left and right channels) in each rat is further calculated 
using different q values ranging from 0.5 to 5 with step size of 
0.1. The result is shown in Fig.6. It denotes that the Pearson 
correlation coefficient is satisfactorily high (above 0.85) when 
q < 3 and reaches the maximum with q = 1.1 (p << 0.01). On the 
other hand, however, RDR decreases rapidly with smaller q and 
it drops bellow -10 dB when q < 1. Fig.7 illustrates this effect 
with typical TsEnA plots from 3 rats. It shows that when q is 
too small (e.g. q = 0.5 and 1 in the first two columns), although 
TsEnA correlates well with the NDS, the differences between 
TsEnA measurements among rats with various NDS (i.e. NDS 
= 74, 67, 52) are diminished because of low RDR. Therefore, a 
trade-off should be made between 1) the linear correlation 
between TsEnA and NDS, and 2) the distinguishability of 
TsEnA among rats with different neurological outcomes. The 
results shown in Fig.6 and Fig.7 suggest that the TsEnA 
exhibits high performance with q around 3, giving large 
correlation coefficient and large RDR at the same time. Fig. 8 
gives a better illustration of the correlation between TsEnA (q = 
3) and neurological outcome (i.e. NDS estimated 72 hours after 
ROSC) (Pearson correlation coefficient = 0.86, p << 0.01). 

V. DISCUSSION AND CONCLUSION 
A defining but elusive feature of physiologic systems is their 

complexity. The output of healthy systems reveals a type of 
complex variability associated with long-range correlations,  

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 22, 2009 at 15:30 from IEEE Xplore.  Restrictions apply. 



Copyright (c) 2009 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> TBME-00423-2009  < 6

 
Fig.6: Pearson correlation coefficient between TsEnA and NDS, and relative 
dynamic range (RDR) of TsEnA with different q values. p << 0.01 for all 
correlation coefficients estimated with q = 0.5-5. 

 
Fig.8: Correlation between TsEnA (q = 3) and NDS. Pearson correlation 
coefficient = 0.86, p << 0.01. 
along with distinct nonlinear interactions; yet this complexity 
breaks down with dysfunction [35].To understand the 
complexity of EEG, it is very much in the need for quantitative 
tools, i.e., the ability to state clinical data in numerical form that 
simplifies the analysis of EEG time series [36].We adapt the 
well known entropy measure, Tsallis entropy, as the TsEnA to 
demarcate the important period with extensive BS pattern. The 
sensitivity of Tsallis measure to burst frequency and BSRa is 
illustrated by simulated data. The p.d.f. of EEG amplitude 
during isoelectricity and continuous activity holds the same 
feature, i.e. a flatter shape; while it sharpens during the BS 
period. In the latter case the value of TsEn in EEG is low so an 

area is formed between TsEn curve and the extremum of TsEn. 
This area could reflect the BS features in EEG after asphyxial 
CA. Our study applies this measure to quantitative analysis of 
the BS pattern in EEG immediately after asphyxial CA in rats. 
To evaluate the TsEnA performance with different q values, 
Pearson correlation between TsEnA and NDS, and RDR of 
TsEnA are compared among EEG recordings from 15 rats. The 
results show that when q is around 3, TsEnA correlates well 
with neurological outcome (Pearson correlation coefficient > 
0.85) and gives high distinguishability among rats with various 
NDS (RDR > 0 dB). Thus the TsEnA measurement calculated 
with q = 3 can reliably and effectively provide early prognostic 
information on cerebral functional recovery. 

In conclusion, in order to improve the “readability” of EEG 
recordings following brain injury, we introduce a method that 
quantitatively interprets the BS pattern in EEG after CA. Three 
discriminative BS features, i.e. burst frequency, BSRa and the 
duration of BS are combined to configure a simplified 
TsEn-based measure, namely TsEnA. This new measure is 
computed and compared among animals with different 
neurological outcomes following asphyxial CA. The results 
show that TsEnA computed with q = 3 could consistently and 
distinguishably quantify the complex dynamics in BS EEG and 
provide early prognostic information on neurological outcomes. 
The measure proposed in this study may be of value in an 
accurate and objective estimation of the gravity of post-CA 
cerebral damage. 
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